Vectors and operations with vectors

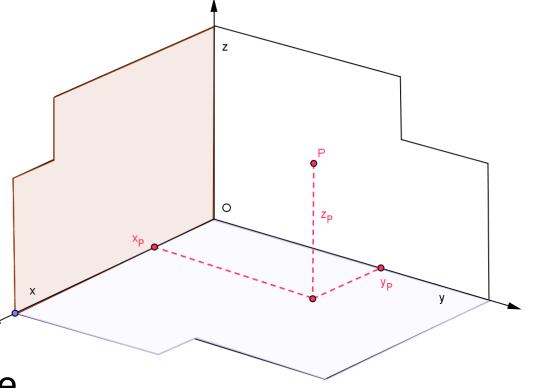
Orthogonal Cartesian coordinate system

- origin O
- 3 coordinate axes

$$x = o_{x}, y = o_{y}, z = o_{z}$$

- 3 coordinate planes

Oxy, Oxz, Oyz



Each point in the space

is identified with an order triple of real numbers

Cartesian coordinates

$$P = [x_P, y_P, z_P]$$

Euclidean distance of two points

$$P_1 = [x_1, y_1, z_1]$$
 and $P_2 = [x_2, y_2, z_2]$ is determined by formula

$$d(P_1, P_2) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Vector in E³ is determined by 2 points

$$\mathbf{a} = \overrightarrow{P_1 P_2} = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$$

Position vector of point *P* is vector

$$\vec{\mathbf{a}} = OP = (x_P, y_P, z_P)$$

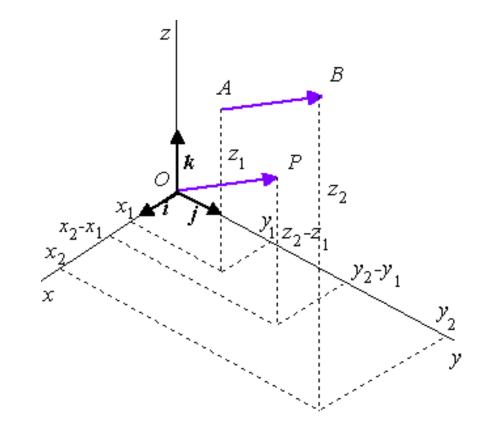
Vector is any oriented line segment

$$\overset{
ightarrow}{\mathbf{v}} = \overset{
ightarrow}{AB}$$

A – start point
B – end point
of one vector location
Coordinates of vector

$$A = [x_A, y_A, z_A]$$

$$B = [x_B, y_B, z_B]$$



$$\overrightarrow{\mathbf{v}} = B - A = (x_B - x_A, y_B - y_A, z_B - z_A)$$

Norm – length of vector

$$\overrightarrow{\mathbf{v}} = \overrightarrow{AB} = B - A = (x_B - x_A, y_B - y_A, z_B - z_A) = (v_1, v_2, v_3)$$

is the distance of its determining points A and B

$$\begin{vmatrix} \overrightarrow{\mathbf{v}} \\ = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2} = \sqrt{v_1^2 + v_2^2 + v_3^2}$$

$$\begin{vmatrix} \overrightarrow{\mathbf{v}} \\ \mathbf{v} \end{vmatrix} = 1$$
 - unit vector

$$\overrightarrow{\mathbf{0}} = (0,0,0)$$
 - zero vector

Angle of 2 vectors

$$\stackrel{\rightarrow}{\mathbf{u}}, \stackrel{\rightarrow}{\mathbf{v}} \stackrel{\rightarrow}{\varphi} = \angle(\stackrel{\rightarrow}{\mathbf{u}}, \stackrel{\rightarrow}{\mathbf{v}})$$

non-parallel vectors

$$\begin{vmatrix} \overrightarrow{\mathbf{u}} \end{vmatrix} \neq 0, \begin{vmatrix} \overrightarrow{\mathbf{v}} \end{vmatrix} \neq 0, \varphi \in \langle 0, \pi \rangle$$

$$\varphi \in (0,\pi)$$

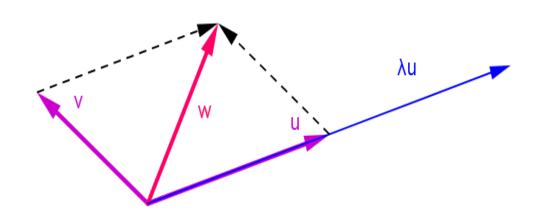
$$\varphi = 0$$

$$\varphi = \pi$$

parallel (collinear) vectors

Operations with vectors

Sum of vectors **u**, **v**



$$\mathbf{u} = (u_1, u_2, u_3)$$

$$\overrightarrow{\mathbf{v}} = (v_1, v_2, v_3)$$

$$\overrightarrow{\mathbf{w}} = \overrightarrow{\mathbf{u}} + \overrightarrow{\mathbf{v}} =$$

$$= (u_1 + v_1, u_2 + v_2, u_3 + v_3)$$

Scalar multiple of a vector

$$\overrightarrow{\mathbf{u}} || \overrightarrow{\mathbf{v}} \Leftrightarrow \exists \lambda \in R, \overrightarrow{\mathbf{u}} = \lambda \overrightarrow{\mathbf{v}}$$

$$\overrightarrow{\mathbf{u}} = (u_1, u_2, u_3)$$

$$\lambda \mathbf{u} = (\lambda u_1, \lambda u_2, \lambda u_3)$$

Vectors $\vec{a}, \vec{b}, \vec{c}$ are linearly dependent, if there exists linear combination of these vectors

$$k.\vec{\mathbf{a}} + l.\vec{\mathbf{b}} + m.\vec{\mathbf{c}} = \vec{\mathbf{0}}$$

such that at least one from coefficients k, l, m is a nonzero real number, i.e. $k^2 + l^2 + m^2 \neq 0$

This means that at least one from vectors $\vec{a}, \vec{b}, \vec{c}$ is a linear combination of the two others.

Unit vectors $\vec{\mathbf{i}} = (1,0,0), \vec{\mathbf{j}} = (0,1,0), \vec{\mathbf{k}} = (0,0,1)$

form ortho-normal basis of the three dimensional space.

 \rightarrow \rightarrow

Scalar product of vectors \mathbf{u}, \mathbf{v}

$$\mathbf{u} \cdot \mathbf{v} = \begin{vmatrix} \mathbf{v} \\ \mathbf{u} \end{vmatrix} \mathbf{v} \cos \varphi, \quad \varphi = \angle \begin{pmatrix} \mathbf{v} \\ \mathbf{u}, \mathbf{v} \end{pmatrix}$$

If
$$\mathbf{u} = \mathbf{0} \lor \mathbf{v} = \mathbf{0} \Rightarrow \mathbf{u} \cdot \mathbf{v} = 0$$

$$\overrightarrow{\mathbf{u}} = (u_1, u_2, u_3), \ \overrightarrow{\mathbf{v}} = (v_1, v_2, v_3), \ \overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} = u_1 v_1 + u_2 v_2 + u_3 v_3$$

$$\cos \varphi = \frac{\overset{\rightarrow}{\mathbf{u}} \cdot \mathbf{v}}{\begin{vmatrix} \mathbf{u} \cdot \mathbf{v} \\ \mathbf{u} \cdot \mathbf{v} \end{vmatrix}}, \quad \varphi = \angle \begin{pmatrix} \overset{\rightarrow}{\mathbf{u}} \cdot \overset{\rightarrow}{\mathbf{v}} \\ \mathbf{u} \cdot \mathbf{v} \end{vmatrix}, \quad \overset{\rightarrow}{\mathbf{u}} \neq \overset{\rightarrow}{\mathbf{0}} \wedge \overset{\rightarrow}{\mathbf{v}} \neq \overset{\rightarrow}{\mathbf{0}}$$

$$\stackrel{\rightarrow}{\mathbf{u}} \perp \stackrel{\rightarrow}{\mathbf{v}} \Leftrightarrow \stackrel{\rightarrow}{\mathbf{u}} \cdot \stackrel{\rightarrow}{\mathbf{v}} = 0, \quad \stackrel{\rightarrow}{\mathbf{u}} \neq \stackrel{\rightarrow}{\mathbf{0}} \wedge \stackrel{\rightarrow}{\mathbf{v}} \neq \stackrel{\rightarrow}{\mathbf{0}}$$

Vector product of vectors \mathbf{u}, \mathbf{v} is vector $\mathbf{w} = \mathbf{u} \times \mathbf{v}$

$$\mathbf{w} = \mathbf{u} \times \mathbf{v}$$

1.
$$\begin{vmatrix} \overrightarrow{\mathbf{w}} \\ \mathbf{u} \end{vmatrix} = \begin{vmatrix} \overrightarrow{\mathbf{u}} \\ \mathbf{v} \end{vmatrix} \sin \varphi$$
, $\varphi = \angle \begin{pmatrix} \overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}} \\ \mathbf{u}, \mathbf{v} \end{pmatrix}$

2.
$$\overrightarrow{\mathbf{w}} \perp \overrightarrow{\mathbf{u}} \wedge \overrightarrow{\mathbf{w}} \perp \overrightarrow{\mathbf{v}}$$

3. Vectors **u**, **v**, **w** form right-handed system.

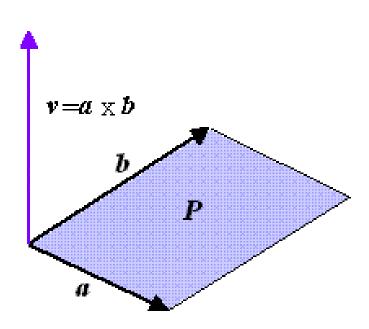
$$\mathbf{u} = (u_1, u_2, u_3)
\mathbf{v} = (v_1, v_2, v_3)$$

$$\mathbf{u} \times \mathbf{v} = \begin{bmatrix}
\vec{i} & \vec{j} & \vec{k} \\
u_1 & u_2 & u_3 \\
v_1 & v_2 & v_3
\end{bmatrix}$$

$$\stackrel{\rightarrow}{u}\mid\stackrel{\rightarrow}{v}\Longleftrightarrow\stackrel{\rightarrow}{u}\times\stackrel{\rightarrow}{v}=\stackrel{\rightarrow}{0},\quad\stackrel{\rightarrow}{u}\neq\stackrel{\rightarrow}{0}\wedge\stackrel{\rightarrow}{v}\neq\stackrel{\rightarrow}{0}$$

Geometric interpretation of vector product Length of vector $\mathbf{v} = \mathbf{a} \times \mathbf{b}$ equals to the area P of a parallelogram with sides in non-collinear vectors \mathbf{a}, \mathbf{b}

$$P = \begin{vmatrix} \overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}} \end{vmatrix}$$



Mixed triple product of vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ is number

$$\begin{bmatrix} \rightarrow & \rightarrow & \rightarrow \\ \mathbf{u}, \mathbf{v}, \mathbf{w} \end{bmatrix} = \begin{pmatrix} \rightarrow & \rightarrow \\ \mathbf{u} \times \mathbf{v} \end{pmatrix} \cdot \mathbf{w}$$

$$\mathbf{u} = (u_1, u_2, u_3)$$

$$\mathbf{v} = (v_1, v_2, v_3)$$

$$\overrightarrow{\mathbf{w}} = (w_1, w_2, w_3)$$

$$\mathbf{u} = (u_1, u_2, u_3)$$

$$\mathbf{v} = (v_1, v_2, v_3)$$

$$\mathbf{v} = (w_1, w_2, w_3)$$

$$\mathbf{w} = (w_1, w_2, w_3)$$

$$\begin{bmatrix} \rightarrow & \rightarrow & \rightarrow \\ \mathbf{u}, \mathbf{v}, \mathbf{w} \end{bmatrix} = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$

Vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are in one plane (are coplanar)

if and only if
$$\begin{bmatrix} \rightarrow & \rightarrow & \rightarrow \\ \mathbf{u}, \mathbf{v}, \mathbf{w} \end{bmatrix} = 0$$

Geometric interpretation of mixed product Absolute value of mixed scalar product of 3 vectors $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ equals to the volume V of parallelepiped with edges in these non-coplanar vectors.

$$V = \left| \begin{bmatrix} \rightarrow & \rightarrow & \rightarrow \\ \mathbf{a} & \mathbf{b} & \mathbf{c} \end{bmatrix} \right|$$

